Mining logical circuits in fungi

  • Michael, JC, Watkinson, SC, & Gooday, GW The Fungi(Gulf Professional Publishing, 2001).

  • Myron Smith, L., Johann Bruhn, N. & James Anderson, B. The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356(6368), 428 (1992).

    ADS Google Scholar

  • Karana, E., Blauwhoff, D., Hultink, E.-J., Camere, S. When the material grows: A case study on designing (with) mycelium-based materials. Int. J. Dec. 12119–136 (2018).

    Google Scholar

  • Jones, M., Mautner, A., Luenco, S., Bismarck, A. & John, S. Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Mater. Dec. 187108397 (2020).

    CAS Google Scholar

  • Cerimi, K., Akkaya, KC, Pohl, C., Schmidt, B. & Neubauer, P. Fungi as source for new bio-based materials a patent review. Fungal Biol. Biotechnol. 6(1), 1–10 (2019).

    Google Scholar

  • Adamatzky, A., Gandia, A., Ayres, P., Wösten, H., & Tegelaar, M. Adaptive fungal architectures. LINKs series, 5:66–77.

  • Pelletier, MG, Holt, GA, Wanjura, JD, Bayer, E. & McIntyre, G. An evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates. Industrial Crops Prod. 51480–485 (2013).

    CAS Google Scholar

  • Elsacker, E. et al. A comprehensive framework for the production of mycelium-based lignocellulosic composites. Sci. Total Environment. 725138431 (2020).

    ADS CAS PubMed Google Scholar

  • Robertson, O. et al. Fungal future: A review of mycelium biocomposites as an ecological alternative insulation material. DS 101: Proceedings of NordDesign 2020, Lyngby, Denmark, 12th-14th August 2020, pages 1–13, (2020).

  • Yang, Z., Zhang, F., Still, B., White, M. & Amstislavski, P. Physical and mechanical properties of fungal mycelium-based biofoam. J. Mater. Civil Eng. 29(7), 04017030 (2017).

    Google Scholar

  • Xing, Y., Brewer, M., El-Gharabawy, M., Griffith, G. & Jones, P. Growing and testing mycelium bricks as building insulation materials. IOP Conf. Series Earth Environ. Sci. 121022032 (2018).

    Google Scholar

  • Girometta, C. et al. Physico-mechanical and thermodynamic properties of mycelium-based biocomposites: A review. Sustainability 11(1), 281 (2019).

    CAS Google Scholar

  • Dias, PP, Jayasinghe, LB & Waldmann, D. Investigation of mycelium-miscanthus composites as building insulation material. Results Mater. 10100189 (2021).

    Google Scholar

  • Fei WANG, Hong-qiang LI, Shu-shuo KANG, Ye-fei BAI, Guo-zhen CHENG, and Guo-qiang ZHANG. The experimental study of mycelium/expanded perlite thermal insulation composite material for buildings. Science Technology and Engineering, 2016:20, (2016).

  • Cárdenas-R, JP Thermal insulation biomaterial based on hydrangea macrophylla. In Bio-Based Materials and Biotechnologies for Eco-Efficient Construction, pp. 187–201. Elsevier, (2020).

  • Holt, GA et al. Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material Evaluation study of select blends of cotton byproducts. J. Biobased Mater. Bioenergy 6(4), 431–439 (2012).

    CAS Google Scholar

  • Sivaprasad, S., Sidharth Byju, K., Prajith, C., Jithin Shaju, Rejeesh, CR Development of a novel mycelium bio-composite material to substitute for polystyrene in packaging applications. Materials Today: Proceedings, (2021).

  • Mojumdar, A., Behera, HT, Ray, L. Mushroom mycelia-based material: An environmentally friendly alternative to synthetic packaging. Microbial Poly. pp https://doi.org/10.1007/978-981-16-0045-6_6 (2021).

  • Adamatzky, A., Nikolaidou, A., Gandia, A., Chiolerio, A. & Dehshibi, MM Reactive fungal wearable. Biosystems 199104304 (2021).

    CAS PubMed Google Scholar

  • Silverman, J., Cao, H. & Cobb, K. Development of mushroom mycelium composites for footwear products. Cloth. Text. Resp. J. 38(2), 119–133 (2020).

    Google Scholar

  • Appels, FVW The use of fungal mycelium for the production of bio-based materials. PhD thesis, Universiteit Utrecht (2020).

  • Jones, Mitchell, Gandia, Antoni, John, Sabu & Bismarck, Alexander. Leather-like material biofabrication using fungi. Nat. Sustain. 41–8 (2020).

    Google Scholar

  • Hitchcock, D., Glasbey, CA & Ritz, K. Image analysis of space-filling by networks: Application to a fungal mycelium. Biotechnol. Tech. 10(3), 205–210 (1996).

    CAS Google Scholar

  • Giovannetti, M., Sbrana, C., Avio, L. & Strani, P. Patterns of below-ground plant interconnections established by means of arbuscular mycorrhizal networks. New Phytol. 164(1), 175–181 (2004).

    PubMed Google Scholar

  • Fricker, M., Boddy, L., & Bebber, D. Network organization of mycelial fungi. In Biology of the Fungal Cell. The Mycota (eds Howard, RJ & Gow, NAR), vol 8. https://doi.org/10.1007/978-3-540-70618-2_13 (Springer, Berlin, Heidelberg, 2007).

  • Fricker, MD, Heaton, LLM, Jones, NS, & Boddy, L. The mycelium as a network. The Fungal Kingdom, pp 335–367, (2017).

  • Islam, MR, Tudryn, G., Bucinell, R., Schadler, L. & Picu, RC Morphology and mechanics of fungal mycelium. Sci. Rope. 7(1), 1–12 (2017).

    Google Scholar

  • Obert, M., Pfeifer, P. & Sernetz, M. Microbial growth patterns described by fractal geometry. J. Bacteriol. 172(3), 1180–1185 (1990).

    CAS PubMed PubMed Central Google Scholar

  • Dhananjay Patankar, B., Tuan-Chi, L. & Oolman, T. A fractal model for the characterization of mycelial morphology. Biotechnol. Bioeng. 42(5), 571–578 (1993).

    Google Scholar

  • Boddy, L. & Bolton, RG Characterization of the spatial aspects of foraging mycelial cord systems using fractal geometry. Mycol. Resp. 97(6), 762–768 (1993).

    Google Scholar

  • Mihail, JD, Obert, M., Bruhn, JN & Taylor, SJ Fractal geometry of diffuse mycelia and rhizomorphs of armillaria species. Mycol. Resp. 99(1), 81–88 (1995).

    Google Scholar

  • Boddy, L., John Wells, M., Culshaw, C. & Donnelly, DP Fractal analysis in studies of mycelium in soil. Geoderma 88(3), 301–328 (1999).

    ADS Google Scholar

  • Papagianni, M. Quantification of the fractal nature of mycelial aggregation in aspergillus niger submerged cultures. Microb. Cell Facts. 5(1), 5 (2006).

    PubMed PubMed Central Google Scholar

  • Adamatzky, A. Tegelaar, M., Wosten, HAB, Powell, AL, Beasley, AE & Mayne, R. On boolean gates in fungal colonies. Biosystems 193104138 (2020).

    PubMed Google Scholar

  • Siccardi, S. & Adamatzky, A. Actin quantum automata: Communication and computation in molecular networks. Nano Commun. Network 6(1), 15–27 (2015).

    Google Scholar

  • Verstraeten, D., Schrauwen, B., d’Haene, M. & Stroobandt, D. An experimental unification of reservoir computing methods. Neural Netw. 20(3), 391–403 (2007).

    CAS PubMed MATH Google Scholar

  • Lukoševičius, M. & Jaeger, H. Reservoir computing approaches to recurrent neural network training. Computer Sci. Reef. 3(3), 127–149 (2009).

    MATH Google Scholar

  • Dale, M., Miller, JF, & Stepney, S. Reservoir computing as a model for in-material computing. In Advances in Unconventional Computing, pp 533–571. Springer, (2017).

  • Konkoli, Z., Nichele, S., Dale, M. & Stepney, S. Reservoir Computing with Computational Matter. In: Computational Matter. Natural Computing Series. (eds Stepney, S., Rasmussen, S. & Amos, M.) https://doi.org/10.1007/978-3-319-65826-1_14 (Springer, Cham, 2018).

  • Dale, M., Miller, JF, Stepney, S., & Trefzer, MA A substrate-independent framework to characterize reservoir computers. Proceedings of the Royal Society A, 475(2226):20180723, (2019).

  • Miller, JF, & Downing, K. Evolution in matter: Looking beyond the silicon box. In Proceedings 2002 NASA/DoD Conference on Evolvable Hardware, pages 167–176. IEEE, (2002).

  • Miller, JF, Harding, SL & Gunnar Tufte, G. Evolution-in-materio: Evolving computation in materials. Evolved. Intel. 7(1), 49–67 (2014).

    Google Scholar

  • Stepney, S. Co-designing the computational model and the computing substrate. In International Conference on Unconventional Computation and Natural Computation, pp 5–14. Springer, (2019).

  • Julian Miller, F., Simon Hickinbotham, J., Amos, M. In materio computation using carbon nanotubes. In Computational Matter, pp 33–43. Springer, (2018).

  • Julian Francis Miller. The alchemy of computation: designing with the unknown. Nat. Comput. 18(3), 515–526 (2019).

    MathSciNet Google Scholar

  • Roelofs, G. & Koman, R. PNG: The definitive guide. O’Reilly & Associates, Inc., (1999).

  • Howard, PG The design and analysis of efficient lossless data compression systems. PhD thesis, Citeseer, (1993).

  • Deutsch, P. & Gailly, JL Zlib compressed data format specification version 3.3. Technical report, (1996).

  • Ziv, J. & Lempel, A. A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 23(3), 337–343 (1977).

    MathSciNet MATH Google Scholar

  • Wolfram, S. Statistical mechanics of cellular automata. Reef. Courage. Phys. 55(3), 601 (1983).

    ADS MathSciNet MATH Google Scholar

  • Martínez, GJ, Adamatzky, A. & McIntosh, HV Phenomenology of glider collisions in cellular automaton rule 54 and associated logical gates. Chaos Solitons Fract. 28(1), 100–111 (2006).

    ADS MathSciNet MATH Google Scholar

  • Martínez, GJ, Adamatzky, A., Stephens, CR & Hoeflich, AF Cellular automaton supercolliders. Int. J. Modern Phys. C 22(04), 419–439 (2011).

    ADS MATH Google Scholar

  • Beasley, AE, Abdelouahab, M.-S., Lozi, R., Powell, AL & Adamatzky, A. Mem-fractive properties of mushrooms. arXiv preprint arXiv:2002.06413, (2020).

  • Leave a Reply

    Your email address will not be published.

    Back to top button