Tailoring the refractive index of impedance-matched ferrite composites

  • Dionne, GF Magnetic Oxides (Springer, 2009).

    Book Google Scholar

  • Snoek, J. Dispersion and absorption in magnetic ferrites at frequencies above one Mc/s. Physics 4207 (1948).

    ADS Article Google Scholar

  • Chai, G., Xue, D., Fan, X., Li, X. & Guo, D. Extending the Snoek’s limit of single layer film in (Co96Jr4∕Cu)n multilayers. Appl. Phys. Easy. 93152516 (2008).

    ADS Article Google Scholar

  • Acher, O. & Dubourg, S. Generalization of Snoek’s law to ferromagnetic films and composites. Phys. Reef. B 77104440 (2008).

    ADS Article Google Scholar

  • Lagarkov, A. & Rozanov, K. High-frequency behavior of magnetic composites. J. Magn. Magn. Mater. 3212082 (2009).

    ADS CAS Article Google Scholar

  • Shirakata, Y., Hidaka, N., Ishitsuka, M., Teramoto, A. & Ohmi, T. Low-loss composite material containing fine Zn–Ni–Fe flakes for high-frequency applications. IEEE Trans. Stomach. 454337 (2009).

    ADS CAS Article Google Scholar

  • Wang, Y. & Grant, P. NiZn ferrite/Fe hybrid epoxy-based composites: Extending magnetic properties to high frequency. Appl. Phys. A 117477 (2014).

    CAS Article Google Scholar

  • Li, Q., Chen, Y., Yu, C., Qian, K. & Harris, VG Permeability spectra of planar M-type barium hexaferrites with high Snoek’s product by two-step sintering. J. Am. Ceram. Soc. 1035076–5085 (2020).

    CAS Article Google Scholar

  • Misra, S., Karan, T. & Ram, S. Dynamics of surface spins in small core-shell magnets of Li0.35Zn0.30Fe2.35O4 bonds over a carbon. J. Phys. Chem. C 11923184 (2015).

    CAS Article Google Scholar

  • Dosoudil, R., Usakova, M., Franek, J., Slama, J. & Gruskova, A. Particle size and concentration effect on permeability and EM-wave absorption properties of hybrid ferrite polymer composites. IEEE Trans. Magn. 46436 (2010).

    ADS CAS Article Google Scholar

  • Slama, J. et al. The influence of particle size and substituent contents on the magnetic properties of Be or Cu substituted NiZn ferrites. Adv. Electr. Electron. Eng. 5362 (2011).

    Google Scholar

  • Li, B., Shen, Y., Yue, Z. & Nan, C. Influence of particle size on electromagnetic behavior and microwave absorption properties of Z-type Ba-ferrite/polymer composites. J. Magn. Magn. Mater. 313322 (2007).

    ADS CAS Article Google Scholar

  • Parsons, P., Duncan, K., Giri, AK, Xiao, JQ & Karna, SP Electromagnetic properties of NiZn ferrite nanoparticles and their polymer composites. J. Appl. Phys. 115173905 (2014).

    ADS Article Google Scholar

  • Li, Q., Chen, Y. & Harris, VG Particle-size distribution modified effective medium theory and validation by magneto-dielectric Co-Ti substituted BaM ferrite composites. J. Magn. Magn. Mater. 45344–47 (2018).

    ADS CAS Article Google Scholar

  • Birajdar, AA et al. Frequency and temperature dependent electrical properties of Ni0.7Zn0.3CrxFairy2xO4 (0 ≤ x ≤ 05). Ceram. Int. 382963–2970 (2012).

    Article Google Scholar

  • Barry, W. & Broad-Band, A. Automated, stripline technique for the simultaneous measurement of complex permittivity and permeability. IEEE Trans. Microwave. Theory Technol. 3480 (1986).

    ADS Article Google Scholar

  • Nicolson, A. & Ross, G. Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrument. Meas. 19377 (1970).

    Article Google Scholar

  • Weir, W. Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE 6233 (1974).

    Article Google Scholar

  • Goldman, A. Modern Ferrite Technology 2nd ed. (Springer, 2010).

    Google Scholar

  • Cullity, BD & Graham, CD Introduction to Magnetic Materials 2nd ed. (John Wiley & Sons, 2011).

    Google Scholar

  • Jahan, N. et al. Correlation between the structural, electrical and magnetic properties of Al3+ substituted Ni–Zn–Co ferrites. RSC Adv. 1215167 (2022).

    CAS Article Google Scholar

  • Koops, C. On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Reef. 83121 (1951).

    ADS CAS Article Google Scholar

  • Loyau, V. et al. An analysis of Mn-Zn ferrite microstructure by impedance spectroscopy, scanning transmission electron microscopy and energy dispersion spectrometry characterizations. J. Appl. Phys. 111053928 (2012).

    ADS Article Google Scholar

  • Adams, T., Sinclair, D. & West, A. Giant barrier layer capacitance effects in CaCu3Ten4O12 ceramics. Adv. Mater. 141321 (2002).

    CAS Article Google Scholar

  • Kawano, K., Hachiya, M., Iijima, Y., Sato, N. & Mizuno, Y. The grain size effect on the magnetic properties in NiZn ferrite and the quality factor of the inductor. J. Magn. Magn. Mater. 3212488 (2009).

    ADS CAS Article Google Scholar

  • Qiang, WY, Yong, W., Bin, L., Ye, Z., Ping, DG Application in measuring the microwave complex permittivity of cylindrical dielectric by using a terminal loaded coaxial probe. In ICEMI 4–46 (2007).

  • Tsutaoka, T. Frequency dispersion of complex permeability in Mn–Zn and Ni–Zn spinel ferrites and their composite materials. J. Appl. Phys. 932789 (2003).

    ADS CAS Article Google Scholar

  • Beatrice, C. et al. Magnetic losses versus sintering treatment in Mn-Zn ferrites. J. Magn. Magn. Mater. 429129–137 (2017).

    ADS CAS Article Google Scholar

  • Parke, L et al. Tailoring the Refractive Index of Impedance-matched Ferrite Composites. http://hdl.handle.net/10871/130799 (University of Exeter ORE).

  • Leave a Reply

    Your email address will not be published.

    Back to top button