Formation of polymorphs and pores in small nanocrystalline iron oxide particles

  • Machala, L., Tuček, JI & Zbořil, R. Polymorphous transformations of nanometric iron (III) oxide: A review. Chem. Mater. 233255–3272 (2005).

    Article Google Scholar

  • Ayyub, P., Palkar, VR, Chattopadhyay, S. & Multani, M. Effect of crystal size reduction on lattice symmetry and cooperative properties. Phys. Reef. B 516135–6138 (1995).

    ADS CAS Article Google Scholar

  • Svendsen, MB Beta-Fe2O3 – eine neue Eisen(III)oxyd-Struktur. Sci. Nat. 145 (1958).

    Google Scholar

  • Lee, J.-S. et al. Hollow nanoparticles of β-iron oxide synthesized by chemical vapor condensation. J. Nanoparticle Res. 6627–631 (2004).

    ADS CAS Article Google Scholar

  • Gonzalez-Carreno, T., Morales, M. & Serna, C. Fine β-Fe2O3 particles with cubic structure obtained by spray pyrolysis. J. Mater. Sci. Easy. 13381–382 (1994).

    CAS Article Google Scholar

  • Sakurai, S., Namai, A., Hashimoto, K. & Ohkoshi, S.-I. First observation of phase transformation of all four Fe2O3 phases (γ→ε→β→α-phase). J. Am. Chem. Soc. 13118299–18303 (2009).

    CAS Article Google Scholar

  • Emery, JD et al. Atomic layer deposition of metastable β-Fe2O3 via isomorphic epitaxy for photoassisted water oxidation. ACS Appl. Mater. Interfaces 621894–21900 (2014).

    CAS Article Google Scholar

  • Suresh, A., Mayo, MJ, Porter, WD & Rawn, CJ Crystallite and grain-size-dependent phase transformations in yttria-doped zirconia. J. Am. Chem. Soc. 86360–362 (2003).

    CAS Google Scholar

  • Diehm, PM, Ágoston, P. & Albe, K. Size-dependent lattice expansion in nanoparticles: reality or anomaly?. ChemPhysChem 132443–2454 (2012).

    CAS Article Google Scholar

  • Cheow, WS, Li, S. & Hadinoto, K. Spray drying formulation of hollow spherical aggregates of silica nanoparticles by experimental design. Chem. Eng. Resp. Dec. 88673–685 (2010).

    CAS Article Google Scholar

  • Schilling, C., Theissmann, R., Notthoff, C. & Winterer, M. Synthesis of small hollow ZnO nanospheres from the gas phase. Party. Party. Syst. Charact. 30434–437 (2013).

    CAS Article Google Scholar

  • Kirkendall, LTE & Upthegrove, C. Rates of diffusion of copper and zinc in alpha brass. Trans. AIME 1337 (1939).

    Google Scholar

  • Koo, B. et al. Hollow iron oxide nanoparticles for application in lithium ion batteries. Nano Lett. 122429–2435 (2012).

    ADS CAS Article Google Scholar

  • Ma, FX et al. Construction of FeP hollow nanoparticles densely encapsulated in carbon nanosheet frameworks for efficient and durable electrocatalytic hydrogen production. Adv. Sci. 61801490 (2019).

    Article Google Scholar

  • Ziarani, GM, Malmir, M., Lashgari, N. & Badiei, A. The role of hollow magnetic nanoparticles in drug delivery. RSC Adv. 925094–25106 (2019).

    ADS Article Google Scholar

  • Hrbac, J., Halouzka, V., Zboril, R., Papadopoulos, K. & Triantis, T. Carbon electrodes modified by nanoscopic iron (III) oxides to assemble chemical sensors for the hydrogen peroxide amperometric detection. Electroanalysis 191850–1854 (2007).

    CAS Article Google Scholar

  • Haasen, P. Physikalische Metallkunde 176 (Springer-Verlag, Cham, 1974).

    Book Google Scholar

  • Winterer, M. Nanocrystalline Ceramics: Synthesis and Structure 10–11 (Springer-Verlag, Cham, 2002).

    Book Google Scholar

  • Ruusunen, J. et al. Controlled oxidation of iron nanoparticles in chemical vapor synthesis. J. Nanoparticle Res. 162270 (2014).

    ADS Article Google Scholar

  • Levish, A. & Winterer, M. Nanoparticles generated by combining hot wall and microwave plasma chemical vapor synthesis. MRS Adv. 3213–218 (2018).

    CAS Article Google Scholar

  • Winterer, M. Discovering paths to optimized nanoparticle characteristics. Chem. Eng. Sci. 186135–141 (2018).

    CAS Article Google Scholar

  • Lutterotti, L., Matthies, S. & Wenk, H. MAUD: A friendly Java program for material analysis using diffraction. Newslett. CPD 2114–15 (1999).

    Google Scholar

  • Danno, T. et al. Crystal structure of β-Fe2O3 and topotactic phase transformation to α-Fe2O3. Cryst. Growth Dec. 13770–774 (2013).

    CAS Article Google Scholar

  • Shin, H.-S. Study on the structure of magemite (Y-Fe2O3). J. Korean Ceram. Soc. 351113–1119 (1998).

    CAS Google Scholar

  • Blake, R., Hessevick, R., Zoltai, T. & Finger, LW Refinement of the hematite structure. Am. My. 51123–129 (1966).

    CAS Google Scholar

  • Bearden, JA & Burr, A. Reevaluation of X-ray atomic energy levels. Reef. Courage. Phys. 39125 (1967).

    ADS CAS Article Google Scholar

  • Rehr, JJ, Kas, JJ, Vila, FD, Prange, MP & Jorissen, K. Parameter-free calculations of X-ray spectra with FEFF9. Phys. Chem. Chem. Phys. 125503–5513 (2010).

    CAS Article Google Scholar

  • Winterer, M. xafsX: a program to process, analyze and reduce X-ray absorption fine structure spectra (XAFS). Int. Tables Crystollogr. 15 (2020).

    Google Scholar

  • Winterer, M. Reverse Monte Carlo analysis of extended x-ray absorption fine structure spectra of monoclinic and amorphous zirconia. Int. J. Appl. Phys. 885635–5644 (2000).

    ADS CAS Article Google Scholar

  • Enz, T. et al. Structure and magnetic properties of iron nanoparticles stabilized in carbon. Int. J. Appl. Phys. 99044306 (2006).

    ADS Article Google Scholar

  • Condon, JB Surface area and porosity determinations by physisorption: Measurement, classical theories and quantum theory 11–14 (Elsevier, Amsterdam, 2006).

    Google Scholar

  • Li, W. et al. Mechanisms on the morphology variation of hematite crystals by Al substitution: The modification of Fe and O reticular densities. Sci. Rope. 61–10 (2016).

    Article Google Scholar

  • Corrias, A., Ennas, G., Mountjoy, G. & Paschina, G. An X-ray absorption spectroscopy study of the Fe K edge in nanosized maghemite and in Fe 2 O 3–SiO 2 nanocomposites. Phys. Chem. Chem. Phys. 21045–1050 (2000).

    CAS Article Google Scholar

  • Levish, A. & Winterer, M. In situ cell for x-ray absorption spectroscopy of low volatility compound vapors. Reef. Sci. Instrument. 91063101 (2020).

    ADS CAS Article Google Scholar

  • Leave a Reply

    Your email address will not be published.

    Back to top button