Ultrafast laser ablation simulator using deep neural networks

  • Kerse, C. et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature 53784–88 (2016).

    ADS CAS Article Google Scholar

  • Gattass, RR & Mazur, E. Femtosecond laser micromachining in transparent materials. Nat Photon. 2219–225 (2008).

    ADS CAS Article Google Scholar

  • Cavalleri, A., Sokolowski-Tinten, K., Bialkowski, J., Schreiner, M. & von der Linde, D. Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy. J. Appl. Phys. 853301–3309 (1999).

    ADS CAS Article Google Scholar

  • Balling, P. & Schou, J. Femtosecond-laser ablation dynamics of dielectrics: Basics and applications for thin films. Rope. Prog. Phys. 76036502 (2013).

    ADS CAS Article Google Scholar

  • Gamaly, EG & Rode, AV Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations. Prog. Quantum Electron. 37215–323 (2013).

    ADS Article Google Scholar

  • Rethfeld, B., Ivanov, DS, Garcia, ME & Anisimov, SI Modeling ultrafast laser ablation. J. Phys. D 50193001 (2017).

    ADS Article Google Scholar

  • Chichkov, BN, Momma, C., Nolte, S., von Alvensleben, F. & Tunnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63109–115 (1996).

    ADS Article Google Scholar

  • Ancona, A. et al. High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system. Opt. Express 168958–8968 (2008).

    ADS CAS Article Google Scholar

  • Stampfli, P. & Bennemann, KH Time dependence of the laser-induced femtosecond lattice instability of Si and GaAs: Role of longitudinal optical distortions. Phys. Reef. B 497299–7305 (1994).

    ADS CAS Article Google Scholar

  • Bonse, J., Baudach, S., Krüger, J., Kautek, W. & Lenzner, M. Femtosecond laser ablation of silicon – modification thresholds and morphology. Appl. Phys. A 7419–25 (2002).

    ADS CAS Article Google Scholar

  • Sokolowski-Tinten, K. et al. Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit. Nature 422287–289 (2003).

    ADS CAS Article Google Scholar

  • Recoules, V., Clérouin, J., Zérah, G., Anglade, PM & Mazevet, S. Effect of intense laser irradiation on the lattice stability of semiconductors and metals. Phys. Reef. Easy. 96055503 (2006).

    ADS CAS Article Google Scholar

  • Lorazo, P., Lewis, LJ & Meunier, M. Thermodynamic pathways to melting, ablation, and solidification in absorbing solids during pulsed laser irradiation. Phys. Reef. B 73134108 (2006).

    ADS Article Google Scholar

  • Ben-Yakar, A., Harkin, A., Ashmore, J., Byer, RL & Stone, HA Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses. J. Phys. D 401447–1459 (2007).

    ADS CAS Article Google Scholar

  • Ernstorfer, R. et al. The formation of warm dense matter: Experimental evidence for electronic bond hardening in gold. Science 3231033–1037 (2009).

    ADS CAS Article Google Scholar

  • Siebert, C. et al. Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses. Opt. Express 217858–7867 (2013).

    ADS Article Google Scholar

  • Wu, C. & Zhigilei, LV Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations. Appl. Phys. A 11411–32 (2014).

    ADS CAS Article Google Scholar

  • Zier, T., Zijlstra, ES & Garcia, ME Quasimomentum-space image for ultrafast melting of silicon. Phys. Reef. Easy. 116153901 (2016).

    ADS Article Google Scholar

  • Winter, J., Rapp, S., Schmidt, M. & Huber, HP Ultrafast laser processing of copper: A comparative study of experimental and simulated transient optical properties. Appl. Surf. Sci. 4172–15 (2017).

    ADS CAS Article Google Scholar

  • Otto, A. & Vazquez, RG Fluid dynamical simulation of high speed micro welding. J. Laser Appl. 30032411 (2018).

    ADS Article Google Scholar

  • Sommer, A. et al. Attosecond nonlinear polarization and light – matter energy transfer in solids. Nature 53486–90 (2016).

    ADS CAS Article Google Scholar

  • Vorobyev, AY & Guo, C. Shot-to-shot correlation of residual energy and optical absorptance in femtosecond laser ablation. Appl. Phys. A 86235–241 (2007).

    ADS CAS Article Google Scholar

  • Lin, Z., Johnson, RA & Zhigilei, LV Computational study of the generation of crystal defects in a bcc metal target irradiated by short laser pulses. Phys. Reef. B 77214108 (2008).

    ADS Article Google Scholar

  • Mirza, I. et al. Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown. Sci. Rope. 6219 (2016).

    Article Google Scholar

  • Tani, S. & Kobayashi, Y. Pulse-by-pulse depth profile measurement of femtosecond laser ablation on copper. Appl. Phys. A 124265 (2018).

    ADS Article Google Scholar

  • Yousef, BF, Knopf, GK, Bordatchev, EV & Nikumb, SK Neural network modeling and analysis of the material removal process during laser machining. Int. J. Adv. Manuf. Technol. 2241–53 (2003).

    Article Google Scholar

  • Dhara, SK, Kuar, AS & Mitra, S. An artificial neural network approach on parametric optimization of laser micro-machining of die-steel. Int. J. Adv. Manuf. Technol. 3939–46 (2008).

    Article Google Scholar

  • Kusumoto, T. & Mori, K. Prediction of ultrashort pulse laser ablation processing using machine learning. Proc. SPIE 116731167303 (2021).

    Google Scholar

  • Krizhevsky, A., Sutskever, I. & Hinton, GE ImageNet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 251097–1105 (2012).

    Google Scholar

  • Carleo, G. & Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 355602–606 (2017).

    ADS MathSciNet CAS Article Google Scholar

  • van Nieuwenburg, EPL, Liu, Y.-H. & Huber, SD Learning phase transitions by confusion. Nat. Phys. 13435–439 (2017).

    Article Google Scholar

  • Carrasquilla, J. & Melko, RG Machine learning phases of matter. Nat. Phys. 13431–434 (2017).

    CAS Article Google Scholar

  • Mills, B., Heath, DJ, Grant-Jacob, JA & Eason, RW Predictive capabilities for laser machining via a neural network. Opt. Express 2617245–17253 (2018).

    ADS CAS Article Google Scholar

  • Heath, DJ et al. Machine learning for 3D simulated visualization of laser machining. Opt. Express 2621574–21584 (2018).

    ADS CAS Article Google Scholar

  • McDonnell, MDT, Grant-Jacob, JA, Praeger, M., Eason, RW & Mills, B. Identification of spatial intensity profiles from femtosecond laser machined depth profiles via neural networks. Opt. Express 2936469 (2021).

    ADS CAS Article Google Scholar

  • Jiang, L. & Tsai, HL Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse. Int. J. Heat Mass Transf. 48487–499 (2005).

    CAS Article Google Scholar

  • Taylor, LL, Scott, RE & Qiao, J. Integrating two-temperature and classical heat accumulation models to predict femtosecond laser processing of silicon. Opt. Mater. Express 8648–658 (2018).

    ADS CAS Article Google Scholar

  • Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional networks for biomedical image segmentation. MICCAI 2015 Lect. Notes Comput. Sci. 9351234–241 (2015).

    Google Scholar

  • Leave a Reply

    Your email address will not be published.

    Back to top button