Graphene – oxide interface for optoelectronic synapse application

  • Shepherd, GM The Synaptic Organization of the Brain (Oxford University Press, 2004).

    Book Google Scholar

  • Merolla, PA et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345668–673 (2014).

    CAS Article Google Scholar

  • Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64. https://doi.org/10.1038/nature14441 (2015).

    CAS Article PubMed Google Scholar

  • Koelmans, WW et al. Projected phase-change memory devices. Nat. Commun. 61–7 (2015).

    Article Google Scholar

  • Zhao, H. et al. Atomically thin femtojoule memristive device. Adv. Mater. 291703232 (2017).

    Article Google Scholar

  • Feng, X. et al. A fully printed flexible MoS2 memristive artificial synapse with femtojoule switching energy. Adv. Electron. Mater. 51900740 (2019).

    CAS Article Google Scholar

  • Xu, R. et al. Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV. Nano Lett. 192411–2417 (2019).

    CAS Article Google Scholar

  • Wang, K. et al. A pure 2H-MoS2 nanosheet-based memristor with low power consumption and linear multilevel storage for artificial synapse emulator. Adv. Electron. Mater. 61901342 (2020).

    CAS Article Google Scholar

  • Chen, J. et al. Uniformly broadband far-infrared response from the photocarrier tunneling of mesa Si: P blocked-impurity-band detector. IEEE Trans. Electron Devices 68560–564 (2020).

    Article Google Scholar

  • Chen, J. et al. High-performance HgCdTe avalanche photodetector enabled with suppression of band-to-band tunneling effect in mid-wavelength infrared. npj Quant. Mater. 61–7 (2021).

    Article Google Scholar

  • Chen, J. et al. Recent progress in improving the performance of infrared photodetectors via optical field manipulations. Sensors 22677 (2022).

    CAS Article Google Scholar

  • Ou, K. et al. Mid-infrared polarization-controlled broadband achromatic metadevice. Sci. Adv. 6eabc0711 (2020).

    CAS Article Google Scholar

  • Ou, K. et al. Broadband achromatic metals in mid-wavelength infrared. Laser Photonics Rev. 152100020 (2021).

    CAS Article Google Scholar

  • Hey, HK et al. Photonic potentiation and electric habituation in ultrathin memristive synapses based on monolayer MoS2. Small 141800079 (2018).

    Article Google Scholar

  • Seo, S. et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 91–8 (2018).

    Article Google Scholar

  • Islam, MM, Dev, D., Krishnaprasad, A., Tetard, L. & Roy, T. Optoelectronic synapse using monolayer MoS2 field effect transistors. Sci. Rope. 101–9 (2020).

    Article Google Scholar

  • Wang, C.-Y. et al. Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor. Sci. Adv. 6eaba6173 (2020).

    Article Google Scholar

  • Abnavi, A. et al. Free-standing multilayer molybdenum disulfide memristor for brain-inspired neuromorphic applications. ACS Appl. Mater. Interfaces. 1345843–45853 (2021).

    CAS Article Google Scholar

  • Freitag, M., Low, T., Xia, F. & Avouris, P. Photoconductivity of biased graphene. Nat Photonics 753 (2013).

    CAS Article Google Scholar

  • Zhan, B. et al. Graphene field-effect transistor and its application for electronic sensing. Small 104042–4065 (2014).

    CAS Article Google Scholar

  • Novoselov, KS et al. Electric field effect in atomically thin carbon films. Science 306666–669 (2004).

    CAS Article Google Scholar

  • Koppens, F. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9780–793 (2014).

    CAS Article Google Scholar

  • Novoselov, K., Mishchenko, OA, Carvalho, OA & Neto, AC 2D materials and van der Waals heterostructures. Science 353aac9439 (2016).

    CAS Article Google Scholar

  • Xia, F. et al. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 91039–1044 (2009).

    CAS Article Google Scholar

  • Liu, C.-H., Chang, Y.-C., Norris, TB & Zhong, Z. Graphene photodetectors with ultra-broadband and high responsiveness at room temperature. Nat. Nanotechnol. 9273–278 (2014).

    CAS Article Google Scholar

  • De Fazio, D. et al. Graphene-quantum dot hybrid photodetectors with low dark-current readout. ACS Nano 1411897–11905 (2020).

    Article Google Scholar

  • Wang, Y., Ho, VX, Henschel, ZN, Cooney, MP & Vinh, NQ Effect of high-κ dielectric layer on 1 / f noise behavior in graphene field-effect transistors. ACS Appl. Nano Mater. 43647–3653 (2021).

    CAS Article Google Scholar

  • Konstantatos, G. et al. Hybrid graphene – quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368. https://doi.org/10.1038/nnano.2012.60 (2012).

    CAS Article PubMed Google Scholar

  • Sun, Z. et al. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 24, 5878–5883. https://doi.org/10.1002/adma.201202220 (2012).

    CAS Article PubMed Google Scholar

  • Zhang, BY et al. Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 41811. https://doi.org/10.1038/ncomms2830 (2013).

    CAS Article PubMed Google Scholar

  • Chitara, B., Panchakarla, L., Krupanidhi, S. & Rao, C. Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons. Adv. Mater. 235419–5424 (2011).

    CAS Article Google Scholar

  • Qin, S. et al. A light-stimulated synaptic device based on graphene hybrid phototransistor. 2D Materials 4035022 (2017).

    Article Google Scholar

  • Tian, ​​H., Wang, X., Wu, F., Yang, Y. & Ren, T. In 2018 IEEE International Electron Devices Meeting (IEDM). 38.36.31–38.36.34.

  • Atanassova, E., Dimitrova, T. & Koprinarova, J. AES and XPS study of thin RF-sputtered Ta2O5 layers. Appl. Surf. Sci. 84193–202 (1995).

    CAS Article Google Scholar

  • Todorova, Z. et al. Electrical and optical characteristics of Ta2O5 thin films deposited by electron-beam vapor deposition. Plasma Process. Polym. 3174–178 (2006).

    CAS Article Google Scholar

  • Chen, X., Bai, R. & Huang, M. Optical properties of amorphous Ta2O5 thin films deposited by RF magnetron sputtering. Opt. Mater. 97109404 (2019).

    CAS Article Google Scholar

  • Kulpa, A. & Jaeger, NA Comparison of the optical properties of tantalum pentoxide, Ta2O5anodically grown from E-beam deposited tantalum, Ta, with Ta2O5 E-beam deposited from a Ta2O5 source. ECS Trans. 41311 (2011).

    CAS Article Google Scholar

  • Kim, S. et al. Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl. Phys. Easy. 94062107 (2009).

    Article Google Scholar

  • Nagashio, K., Nishimura, T. & Toriumi, A. Estimation of residual carrier density near the Dirac point in graphene through quantum capacitance measurement. Appl. Phys. Easy. 102173507 (2013).

    Article Google Scholar

  • Chan, J. et al. Reducing extrinsic performance-limiting factors in graphene grown by chemical vapor deposition. ACS Nano 6, 3224–3229. https://doi.org/10.1021/nn300107f (2012).

    CAS Article PubMed Google Scholar

  • Ni, Z., Wang, Y., Yu, T. & Shen, Z. Raman spectroscopy and imaging of graphene. Nano Res. 1273–291 (2008).

    CAS Google Scholar

  • Malard, L., Pimenta, MA, Dresselhaus, G. & Dresselhaus, M. Raman spectroscopy in graphene. Phys. Rope. 47351–87 (2009).

    CAS Article Google Scholar

  • Chaneliere, C., Autran, J., Devine, R. & Balland, B. Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications. Mater. Sci. Eng. R. Rep. 22269–322 (1998).

    Article Google Scholar


  • Source link

    Leave a Reply

    Your email address will not be published.

    Back to top button