Graphene – oxide interface for optoelectronic synapse application
Shepherd, GM The Synaptic Organization of the Brain (Oxford University Press, 2004).
Merolla, PA et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345668–673 (2014).
Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64. https://doi.org/10.1038/nature14441 (2015).
Koelmans, WW et al. Projected phase-change memory devices. Nat. Commun. 61–7 (2015).
Zhao, H. et al. Atomically thin femtojoule memristive device. Adv. Mater. 291703232 (2017).
Feng, X. et al. A fully printed flexible MoS2 memristive artificial synapse with femtojoule switching energy. Adv. Electron. Mater. 51900740 (2019).
Xu, R. et al. Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV. Nano Lett. 192411–2417 (2019).
Wang, K. et al. A pure 2H-MoS2 nanosheet-based memristor with low power consumption and linear multilevel storage for artificial synapse emulator. Adv. Electron. Mater. 61901342 (2020).
Chen, J. et al. Uniformly broadband far-infrared response from the photocarrier tunneling of mesa Si: P blocked-impurity-band detector. IEEE Trans. Electron Devices 68560–564 (2020).
Chen, J. et al. High-performance HgCdTe avalanche photodetector enabled with suppression of band-to-band tunneling effect in mid-wavelength infrared. npj Quant. Mater. 61–7 (2021).
Chen, J. et al. Recent progress in improving the performance of infrared photodetectors via optical field manipulations. Sensors 22677 (2022).
Ou, K. et al. Mid-infrared polarization-controlled broadband achromatic metadevice. Sci. Adv. 6eabc0711 (2020).
Ou, K. et al. Broadband achromatic metals in mid-wavelength infrared. Laser Photonics Rev. 152100020 (2021).
Hey, HK et al. Photonic potentiation and electric habituation in ultrathin memristive synapses based on monolayer MoS2. Small 141800079 (2018).
Seo, S. et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 91–8 (2018).
Islam, MM, Dev, D., Krishnaprasad, A., Tetard, L. & Roy, T. Optoelectronic synapse using monolayer MoS2 field effect transistors. Sci. Rope. 101–9 (2020).
Wang, C.-Y. et al. Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor. Sci. Adv. 6eaba6173 (2020).
Abnavi, A. et al. Free-standing multilayer molybdenum disulfide memristor for brain-inspired neuromorphic applications. ACS Appl. Mater. Interfaces. 1345843–45853 (2021).
Freitag, M., Low, T., Xia, F. & Avouris, P. Photoconductivity of biased graphene. Nat Photonics 753 (2013).
Zhan, B. et al. Graphene field-effect transistor and its application for electronic sensing. Small 104042–4065 (2014).
Novoselov, KS et al. Electric field effect in atomically thin carbon films. Science 306666–669 (2004).
Koppens, F. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9780–793 (2014).
Novoselov, K., Mishchenko, OA, Carvalho, OA & Neto, AC 2D materials and van der Waals heterostructures. Science 353aac9439 (2016).
Xia, F. et al. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 91039–1044 (2009).
Liu, C.-H., Chang, Y.-C., Norris, TB & Zhong, Z. Graphene photodetectors with ultra-broadband and high responsiveness at room temperature. Nat. Nanotechnol. 9273–278 (2014).
De Fazio, D. et al. Graphene-quantum dot hybrid photodetectors with low dark-current readout. ACS Nano 1411897–11905 (2020).
Wang, Y., Ho, VX, Henschel, ZN, Cooney, MP & Vinh, NQ Effect of high-κ dielectric layer on 1 / f noise behavior in graphene field-effect transistors. ACS Appl. Nano Mater. 43647–3653 (2021).
Konstantatos, G. et al. Hybrid graphene – quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368. https://doi.org/10.1038/nnano.2012.60 (2012).
Sun, Z. et al. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 24, 5878–5883. https://doi.org/10.1002/adma.201202220 (2012).
Zhang, BY et al. Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 41811. https://doi.org/10.1038/ncomms2830 (2013).
Chitara, B., Panchakarla, L., Krupanidhi, S. & Rao, C. Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons. Adv. Mater. 235419–5424 (2011).
Qin, S. et al. A light-stimulated synaptic device based on graphene hybrid phototransistor. 2D Materials 4035022 (2017).
Tian, H., Wang, X., Wu, F., Yang, Y. & Ren, T. In 2018 IEEE International Electron Devices Meeting (IEDM). 38.36.31–38.36.34.
Atanassova, E., Dimitrova, T. & Koprinarova, J. AES and XPS study of thin RF-sputtered Ta2O5 layers. Appl. Surf. Sci. 84193–202 (1995).
Todorova, Z. et al. Electrical and optical characteristics of Ta2O5 thin films deposited by electron-beam vapor deposition. Plasma Process. Polym. 3174–178 (2006).
Chen, X., Bai, R. & Huang, M. Optical properties of amorphous Ta2O5 thin films deposited by RF magnetron sputtering. Opt. Mater. 97109404 (2019).
Kulpa, A. & Jaeger, NA Comparison of the optical properties of tantalum pentoxide, Ta2O5anodically grown from E-beam deposited tantalum, Ta, with Ta2O5 E-beam deposited from a Ta2O5 source. ECS Trans. 41311 (2011).
Kim, S. et al. Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl. Phys. Easy. 94062107 (2009).
Nagashio, K., Nishimura, T. & Toriumi, A. Estimation of residual carrier density near the Dirac point in graphene through quantum capacitance measurement. Appl. Phys. Easy. 102173507 (2013).
Chan, J. et al. Reducing extrinsic performance-limiting factors in graphene grown by chemical vapor deposition. ACS Nano 6, 3224–3229. https://doi.org/10.1021/nn300107f (2012).
Ni, Z., Wang, Y., Yu, T. & Shen, Z. Raman spectroscopy and imaging of graphene. Nano Res. 1273–291 (2008).
Malard, L., Pimenta, MA, Dresselhaus, G. & Dresselhaus, M. Raman spectroscopy in graphene. Phys. Rope. 47351–87 (2009).
Chaneliere, C., Autran, J., Devine, R. & Balland, B. Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications. Mater. Sci. Eng. R. Rep. 22269–322 (1998).
Source link